Answers for Lesson 6-3, pp. 324–326 Exercises

1. 5
2. \(x = 3, y = 4 \)
3. \(x = 1.6, y = 1 \)
4. \(\frac{5}{3} \)
5. 5
6. 13

7. Yes; both pairs of opp. sides are \(\cong \).
8. No; the quad. could be a kite.
9. Yes; both pairs of opp. \(\triangle \) are \(\cong \).
10. It remains a \(\square \) because the shelves and connecting pieces remain \(\parallel \).
11. A quad. is a \(\square \) if and only if opp. sides are \(\cong \) (6-1 and 6-5); opp. \(\triangle \) are \(\cong \) (6-2 and 6-6); diags. bis. each other (6-3 and 6-7).

b. Div. Prop. of Eq.
c. \(AD \parallel BC, AB \parallel DC \)
d. If same-side int. \(\angle \) are suppl., the lines are \(\parallel \).
e. Def. of \(\square \)

13. Draw diagonals \(\overline{TX} \) and \(\overline{WY} \) intersecting at \(R \).
 a. \(TW \cong YX \) (Given)
b. \(\angle TWR \cong \angle XYG \) (Alt. Int. \(\triangle \) \(\cong \))
c. \(\angle WTR \cong \angle YXR \) (Alt. Int. \(\triangle \) \(\cong \))
d. \(\triangle TWR \cong \triangle YXR \) (ASA)
e. \(WR \cong YR \) (CPCTC)
f. \(TR \cong XR \) (CPCTC)
g. The diagonals bisect each other. (def. of bis.)
h. \(TWXY \) is a \(\square \) (Thm. 6-7).
Answers for Lesson 6-3, pp. 324–326 Exercises (cont.)

14. $x = 15, y = 25$
15. $x = 3, y = 11$
16. $c = 8, a = 24$
17. $k = 9, m = 23.4$
18. D
19. Answers may vary. Sample:

![Diagram of parallelogram]

20. $\angle JKN \cong \angle LMN$ (given), $\angle LKN \cong \angle JMN$ (given), and $MK \cong MK$, so $\triangle JKM \cong \triangle LMK$ by ASA. $JK \cong ML$ and $MJ \cong LK$ (CPCTC), so $JKLM$ is a \square because opp. sides are \cong (Thm. 6-5).

21. $\triangle TRS \cong \triangle RTW$ (given), so $ST \cong RW$ and $SR \cong TW$. $RSTW$ is a \square because opp. sides are \cong (Thm. 6-5).

22. (4, 0)
23. (6, 6)
24. (−2, 4)

25. You can show a quad. is a \square if both pairs of opp. sides are \parallel or \cong, if both pairs of opp. \triangle are \cong, if diagonals bisect each other, if all consecutive \triangle are suppl., or if one pair of opp. sides is both \parallel and \cong.

26. $\frac{1}{6}$
27. Answers may vary. Sample:

 1. $\overline{AB} \cong \overline{CD}, \overline{AC} \cong \overline{BD}$ (Given)

 2. \overline{ACDB} is a \Box. (If opp. sides of a quad. are \cong, then it is a \Box.)

 3. M is the midpoint of \overline{BC}. (The diag. of a \Box bisect each other.)

 4. \overline{AM} is a median. (Def. of a median)

28. $G(-4, 1), H(1, 3)$